Reaction-diffusion Systems: Destabilizing Effect of Conditions given by Inclusions
نویسنده
چکیده
Sufficient conditions for destabilizing effects of certain unilateral boundary conditions and for the existence of bifurcation points for spatial patterns to reaction-diffusion systems of the activator-inhibitor type are proved. The conditions are related with the mollification method employed to overcome difficulties connected with empty interiors of appropriate convex cones.
منابع مشابه
Reaction-diffusion Systems: Destabilizing Effect of Conditions given by Inclusions Ii, Examples
The destabilizing effect of four different types of multivalued conditions describing the influence of semipermeable membranes or of unilateral inner sources to the reaction-diffusion system is investigated. The validity of the assumptions sufficient for the destabilization which were stated in the first part is verified for these cases. Thus the existence of points at which the spatial pattern...
متن کاملGlobal Bifurcation for a Reaction-diffusion System with Inclusions
We consider a reaction-diffusion system exhibiting diffusion driven instability if supplemented by Dirichlet-Neumann boundary conditions. We impose unilateral conditions given by inclusions on this system and prove that global bifurcation of spatially nonhomogeneous stationary solutions occurs in the domain of parameters where bifurcation is excluded for the original mixed boundary value proble...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملA numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملAn existence results on positive solutions for a reaction-diffusion model with logistics growth and indefinite weight
In this paper, using sub-supersolution argument, we prove an existence result on positive solution for an ecological model under certain conditions. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. The assumptions are that the ecosystem is spatially homogeneous and the herbivore density is a constant which are valid assumptions for mana...
متن کامل